RIH - BRAIN PERFUSION GE LIGHTSPEED VCT PROTOCOL

Scan Type	brain	cta neck brain	brain perfusion
	helical	helical	axial
KV / mA / Rotation time (sec)	brain	cta neck brain	brain perfusion
Pitch / Speed (mm/rotation)	120kv/smart mA(50-350)	120kv/smart mA(100	0-700) 80kv/475mA
Noise Index / ASiR / Dose	.8 sec	.8 sec	0.4 sec
Reduction	0.531:1, 10.62mm	.984:1, 39.37m	im 8i
	6.5 / 20 / 20%	10 / 20 / 20%	none / 20 / 20%
Detector width x Rows = Beam	0.62 mm x 32 = 20 mm	0.62 mm x $64 = 40$	5mm 5 mm x 8i = 40mm
Collimation	0.02		33 - 190 mAs exposures
Average Tube Output	ctdi - 51.1 mGy	ctdi – 10.4 mGv	ctdi - 285 mGy
	dlp - 872 mGy.cm	dlp - 365 mGv.cn	dlp = 1189 mGy.cm
First Helical Set	body	thickness/	recon
Slice Thickness/ Spacing	recon part	spacing	algorithm destination.
Algorithm / Recon Destination	1 nc brain	.6mm x .6mm	standard dmpr
Second Helical Set	hody	thiskness/	racon
Slice Thickness/ Spacing	body	unckness/	algorithm dostination
Algorithm	1 thin at nock/brain	Spacing	soft for dmpr
Recon Destination	2 eta nock/brain	$25 \text{mm} \times 25 \text{mm}$	standard nace
Third Helical Set	<u>body</u>	thickness/	standard pacs
Slice Thickness/ Spacing	recon part	snacing	algorithm
Algorithm / Recon Destination	1 contrast brain	6mm x 6mm	standard dmpr
A vial Sat	hody	thickness/	
Slice Thickness/ Spacing	body recon part	spacing	algorithm dostination
Algorithm / Recon Destination	1 brain partusion	5mm x 5mm	standard for mans/macs
Scan Start / End Locations	nc brain / contrast brain cta neck brain brain perfusion		
	Icm inferior to skull base	1 cm interior to aortic	arch just superior to sella tursica
DFOV	skull vertex	skull vertex	40mm above start point
W Contract Volume / Type /		2.30111	23CIII brain perfusion
Poto		oral (Omninggue 250)	40mL Johaval (Omninagua 250)
I NAIP		exor (Ommpaque 550)	40mL Ionexol (Ommpaque 550)
Nate	80mL Ion	3mI /000	6mI /soo
Scan Delay	smart	3mL/sec	6mL/sec
Scan Delay	some ion smart	3mL/sec prep at aortic arch	6mL/sec use chart
Scan Delay 2D/3D Technique Used	NC and C+ Brain: DMPR	3mL/sec prep at aortic arch 5mm x 5mm axial bra	6mL/sec use chart an reformats in the glabello-meatal
Scan Delay 2D/3D Technique Used	NC and C+ Brain: DMPR plane (auto-batch off), ave	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS
Scan Delay 2D/3D Technique Used	NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS h, mip mode (auto-batch on, auto h x 1.0, min mode (auto batch on
Scan Delay 2D/3D Technique Used	NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform send on) Sagittal and co auto send on)	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS n, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on,
Scan Delay 2D/3D Technique Used	NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf mats, 10.0mm x 3.0mm ronal reformats 1.0 mm	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS h, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on, neck and brain post contrast
Scan Delay 2D/3D Technique Used Comments: The study is done i brain and ct perfusion (23 ex	somE for smart NC and C+ Brain: DMPR plane (auto-batch off), av CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS n, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on, neck and brain – post contrast
Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan determine	some ion smart NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reforn send on) Sagittal and co auto send on) n four parts. The sequence posures over a 70 sec durat delay for the perfusion. It	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf mats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS h, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on, neck and brain – post contrast acreen save time to peak at the patry on the Perfusion scan only
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of	some ion smart NC and C+ Brain: DMPR plane (auto-batch off), av CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence sposures over a 70 sec durate delay for the perfusion. It Arch Time to Peak	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS n, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on, neck and brain – post contrast forceen save time to peak at the antry on the Perfusion scan only.
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of	NC and C+ Brain: DMPR plane (auto-batch off), avec CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence posures over a 70 sec durate delay for the perfusion. It Arch Time to Peak Pea 18 seconds	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga erfusion Scan Delay 2 seconds	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS a, mip mode (auto-batch on, auto an x 1.0, mip mode (auto-batch on, neck and brain – post contrast acreen save time to peak at the antry on the Perfusion scan only.
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of	NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence posures over a 70 sec durate delay for the perfusion. It Arch Time to Peak Pea 18 seconds 21 seconds	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga erfusion Scan Delay 2 seconds 3 seconds	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS h, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on, neck and brain – post contrast acreen save time to peak at the antry on the Perfusion scan only.
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of	some ion smart NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence posures over a 70 sec durate delay for the perfusion. It Arch Time to Peak Pea 18 seconds 21 seconds 24 seconds	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga erfusion Scan Delay 2 seconds 3 seconds 7 seconds	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS a, mip mode (auto-batch on, auto an x 1.0, mip mode (auto-batch on, neck and brain – post contrast acreen save time to peak at the antry on the Perfusion scan only.
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of	NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence cposures over a 70 sec durate delay for the perfusion. It Arch Time to Peak Pea 18 seconds 21 seconds 24 seconds 27 seconds	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga erfusion Scan Delay 2 seconds 3 seconds 7 seconds 10 seconds	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS a, mip mode (auto-batch on, auto an x 1.0, mip mode (auto-batch on, neck and brain – post contrast acreen save time to peak at the antry on the Perfusion scan only.
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of	NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence posures over a 70 sec durate delay for the perfusion. It Arch Time to Peak Pe 18 seconds 21 seconds 24 seconds 27 seconds 30 seconds	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga erfusion Scan Delay 2 seconds 3 seconds 7 seconds 10 seconds 14 seconds Do not	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS h, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on, neck and brain – post contrast creen save time to peak at the antry on the Perfusion scan only.
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of Images required in PACS	some ion smart NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reform send on) Sagittal and co auto send on) n four parts. The sequence posures over a 70 sec durate delay for the perfusion. It Arch Time to Peak Pe 18 seconds 21 seconds 21 seconds 27 seconds 30 seconds scouts, axial nc brain, axia	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga erfusion Scan Delay 2 seconds 3 seconds 7 seconds 10 seconds 14 seconds Do not 1 carotid/brain cta, axia	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS a, mip mode (auto-batch on, auto an x 1.0, mip mode (auto-batch on, neck and brain – post contrast acreen save time to peak at the antry on the Perfusion scan only.
Scan Delay 2D/3D Technique Used Comments: The study is done i brain – and ct perfusion. (23 ex arch will determine the scan of Images required in PACS	NC and C+ Brain: DMPR plane (auto-batch off), ave CTA: DMPR Axial reforn send on) Sagittal and co auto send on) n four parts. The sequence posures over a 70 sec durat delay for the perfusion. It Arch Time to Peak Pe 18 seconds 21 seconds 24 seconds 27 seconds 30 seconds 30 seconds scouts, axial nc brain, axia mips, sagittal and coronal to	3mL/sec prep at aortic arch 5mm x 5mm axial bra erage mode, auto transf nats, 10.0mm x 3.0mm ronal reformats 1.0 mm is: non con brain – cta ion) The smart prep s is OK to angle the ga erfusion Scan Delay 2 seconds 3 seconds 3 seconds 10 seconds 14 seconds Do not 1 carotid/brain cta, axia neck brain 1.0 mm x 1.	6mL/sec use chart ain reformats in the glabello-meatal ferred to PACS h, mip mode (auto-batch on, auto n x 1.0, mip mode (auto-batch on, neck and brain – post contrast acreen save time to peak at the antry on the Perfusion scan only. t use a delay greater than 16 sec. al neck brain 10.0mm x 3.0mm .0 mips, post contrast brain, color