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Antisense oligonucleotides (ASOs) are single−stranded deoxyribonucleotide oligomers that knock down gene

expression at the post−transcriptional level. ASOs can treat a vast array of neurodegenerative diseases but

cannot bypass the blood−brain barrier (BBB), necessitating invasive and inefficient intrathecal injections

for clinical applications. A drug vehicle that can cross the blood−brain barrier after intravenous injection

and degrade safely after delivery would greatly improve the treatment of brain disease. Janus base nanopieces

(NPs) are a family of drug vehicles formed by two joined DNA bases attached to a positively charged amino

acid tail. Bases non−covalently assemble into long strands of nanotubes that wrap around nucleic acid cargo

to disguise negative charge. Here, we used NPs to intravenously deliver ASOs across the BBB in mice and

tested their efficiency by knocking down the ubiquitously expressed noncoding RNA MALAT1 via RNase H−mediated

degradation.
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Crossing the blood−brain barrier to deliver antisense oligonucleotides
therapeutics using DNA/lysine nanopieces


