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The rise of multi−drug resistant bacteria, has prompted a dire need for the development of antibiotic−

independent antimicrobial agents. The Diane N. Weiss Lab for Orthopaedic Trauma Research has developed a

novel formulation composed of silver carboxylate suspended in a 95% titanium dioxide (TiO2)/polydimethyl

siloxane (PDMS) matrix. To characterize safety in human tissues, we performed the MTT cell viability assay

for osteoblasts (OBs), keratinocytes (KTs), and skeletal muscle cells (SkMCs) and compared the cytotoxicity

profile to that of cruder forms of silver as well as last resort antibiotics commonly used to treat surgical

infections.
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