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Clinical data from patients treated with sodium−glucose transport protein 2 (SGLT2) inhibitors has shown a

reduction in cardiovascular mortality and congestive heart failure symptom burden. However, the biochemical

mechanism of SGLT2 inhibitors in the myocardium is poorly understood. Our group has previously shown that

SGLT2 inhibitor canagliflozin treatment results in increased cardiac output and myocardial perfusion in a

swine model for chronic myocardial ischemia. The current study aims to determine the effects of canagliflozin

on inflammation in chronically ischemic myocardium.
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Yorkshire swine underwent placement of an ameroid constrictor on the left circumflex artery to model chronic

myocardial ischemia. The pigs recovered for two weeks then were assigned to either no drug (n=8) or 300mg

canagliflozin oral daily (n=8) for five weeks. After 5 weeks the pigs were euthanized, and tissues were

harvested for analysis. Protein expression was analyzed using immunoblotting. Protein expression was plotted

with our previously reported myocardial perfusion data and analyzed for correlations between perfusion

and protein expression using Spearman's rank correlation coefficient. Statistical analysis included Mann

Whitney U test and t−test as appropriate. Outliers greater than two standard deviations where removed when

appropriate.
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