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Sodium−glucose cotransporter−2 (SGLT2) inhibitors have cardioprotective effects independent of glucose

control, as demonstrated in animal models of acute myocardial ischemia and in clinical trials of patients

with heart failure. The mechanisms of these effects require further investigation. The purpose of this study

is to determine the effects of canagliflozin therapy on myocardial function, perfusion, and microvessel

density in a large animal model of chronic myocardial ischemia.
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Figure: Effects of canagliflozin therapy on myocardial function and perfusion in the 
setting of chronic myocardial ischemia. Canagliflozin therapy was associated with 
improved A) hemodynamic parameters, including increased stroke volume (SV) and 
decreased left ventricular (LV) stiffness, and B) perfusion to the ischemic myocardial 
territory at rest and during pacing to 150 beats per minute, compared to control.  LV 
stiffness coefficient ß derived from end diastolic pressure volume relationship.  P values 
were calculated using Wilcoxon rank sum test. *p<0.05; **p<0.01


