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Twenty−two 10−13−year−old children (12.03±1.14 years, 12F) ranging in parent−rated inattention

(Conners−3−Parent t=38−76) completed a week of actigraphy−monitored at−home sleep stabilization (9.5h

TIB). Participants then slept in the laboratory with polysomnography for a baseline (BSL) opportunity

of 9.5h (21:00−06:30) and returned the subsequent evening for wake extension (WE) to 02:30 and a

4h recovery sleep opportunity (02:30−06:30). Participants completed batteries including a 5−minute

tablet−based psychomotor vigilance task (PVT; BrainBaseline) and subjective state ratings at 20:00 and

07:30, as well as at three additional points during WE: 22:00, 00:00, and 01:30. The current analyses

focused on PVT reciprocal reaction time (RRT: 1/RT) and the Stanford Sleepiness Scale (SSS).
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Six subjects (female, 51−68 yrs) with no history of wrist or hand pathology were instructed to complete

seven wrist motion tasks, where motion was measured through five radiopaque beads placed on the dorsal

surface of the hand. An average of 400 frames were recorded per task. The 3D coordinates of the beads

were tracked for all motion using XMALab. Wrist motion was defined as the motion of the third metacarpal

(MC3) relative to the radius and was computed using BVR bone tracking software (Autoscoper). STA was

defined as the displacement of the average of the beads relative to a neutral pose and reported as a

function of wrist motion within each task.
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Bead displacement was greatest in the pitcher pouring motion task (~12.5 mm) and least in radial ulnar

deviation (~4.5 mm) (Figure 1a). Grasping motion tasks had a larger average of bead displacement (~11.2

mm) than open hand tasks (~5 mm), likely due to the stretch of skin in prehension. Circumduction had the
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Figure 1. a) Box plot of the magnitude of average bead displacement for all subjects across seven 
moƟon tasks: flexion-extension, radial-ulnar deviaƟon, circumducƟon, doorknob pronaƟon and 
supinaƟon, pitcher pouring, and hammering.  
b) Bead displacement at each degree of rotaƟon (phi) for radial-ulnar deviaƟon and flexion-
extension wrist moƟon of all subjects (Radial-ulnar deviaƟon moƟon trial) 
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The goal of the COBRE Center on Sleep and circadian rhythms in child and adolescent mental health is

to build a center that will help bridge the chasm between sleep and circadian science and child and

adolescent mental health. The objective of the Sleep and Circadian Methods (SCM) Research Core is to

support researchers in the appropriate use of sleep and circadian methods across the research process.

Sleep and circadian data are complex and multimodal, requiring specialized expertise to select, acquire,

score, analyze and interpret. The center helps by providing multidisciplinary resources focused on all

aspects of the research process starting at study design moving through data acquisition and quality

control to data processing and ending at analysis and interpretation. The Long−term goal of this core is

to integrate pediatric sleep and circadian methods into Bradley Hospital infrastructure thus providing

an enduring resource that will support research addressing the interplay between mental health,

development, sleep, and circadian rhythms.
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in−lab facilities, instrumentation, software, and database resources, required for acquisition, storage,

and scoring sleep and circadian data, and 3) Serve as resource for training in current best practices

and for identifying novel methodological, measurement, and analytic approaches to sleep and circadian

assessments suitable for pediatric mental health populations.
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While following fixed schedules, 39 participants simultaneously wore the Micro Motionlogger actigraph

(Ambulatory Monitoring Inc., Ardley, NY) on their non−dominant wrist and the Actigpatch (Circadian

Positioning Systems, Newport, RI) over the triceps of their dominant arm. Our analyses included 35

participants (21F; 32.9±13.2yrs) who contributed =four nights of data (range: 4−14 [mean: 10] nights).

After matching devices' tri−axial actimetry in one−minute epochs, we derived key non−parametric

parameters of diurnal activity and calculated intraclass correlations to measure agreement. The

non−parametric parameters include interdaily stability (IS), intradaily variability (IV), timing of

the five hours of lowest activity (L5onset) and ten hours of highest activity (M10onset), and overall

relative amplitude (RA).
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Antibiotic resistance continues to be an increasingly difficult and impactful challenge to modern

healthcare. The development of novel antibiotics is time−consuming, and current antibiotics are

vulnerable to antibiotic resistance due to poor stewardship and overreliance on synthetic antibiotics

sharing a similar chemical structure. For this reason, silver, which has been shown to possess

multi−mechanistic antimicrobial properties, is a potential alternative or synergist to current 'last

resort' antibiotics. However, cytotoxicity concerns due to the uncontrolled release of silver have lead

to an 'smart release' formulation of silver, silver carboxylate (AgCar) within a matrix of titanium

dioxide and polydimethylsiloxane (TiO2/PDMS), which allows for controlled release of silver. While AgCar

has been shown to be safe with predictable pharmacokinetics of release, the antimicrobial mechanism of

action of AgCar has not been established. The aim of this project was to investigate the bactericidal

mechanism of action of AgCar, including how it influences the release of reactive oxygen species

(ROS) in Serratia marcescens and Methicillin−sensitive Staphylococcus aureus, two pathogens commonly

encountered in orthopedic infections.
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Characterization of the Antimicrobial Mechanisms of Silver Carboxylate
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Staphylococcus aureus



Figure 1. Serratia marcescens release of reactive oxygen
species (ROS) in response to AgCar gradients.
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Using our previously described biofilm assay, six unique spa−type MRSA isolates were grown on tryptic

soy agar. After overnight growth, a starting inoculum of 6−log10 CFU/mL was made in tryptic soy

broth supplemented with 25mg/L calcium, 12.5mg/L magnesium, and 1.0% dextrose (STSB). ..−potential of

planktonic cells (zero hour) was determined from the incolumn. Biofilm was then grown in tissue culture

treated 12−well plates for 4 and 24 hours. At each time point, biofilms were sonicated and resuspended

to measure ..−potential following biofilm production and compare it to its time zero counterpart

(planktonic cells).Bacterial ..−potentials were measured using a Malvern Zetasizer Nano ZS (Malvern

Instruments). ..−potentials were calculated from the electrophoretic mobility by Smoluchowski's equation

at 25oC, with five repeats per sample. The dielectric constant of the dispersant set at 78.54. Viscosity

set at 0.6864 cP and the refractive index at 1.333.
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Interpersonal trauma is a simultaneous risk and transdiagnostic factor for a wide array of adverse

mental health outcomes, including substance use; however, the influence of trauma is often multifaceted.

Prior research has identified shame as a potential mediator in this complex, multidirectional cycle of

substance use, interpersonal trauma, and related mental health outcomes, but further review is needed.

As such, a systematic review was conducted to investigate this relationship and pinpoint its underlying

processes within the existing literature.
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Several articles had samples comprised only of women (n=17), and alcohol was identified most among

the substances studied in the sample (n=27). Women and LGBTQ+ individuals were more likely to

report a history of sexual assault, physical assault, and childhood sexual assault. The majority

of articles identified shame as a mediator between interpersonal trauma and substance use; however,

some articles found substance use to predate the onset of shame (notably, shame exclusively related

to SUD, not interpersonal trauma)(n=9). Shame, alcohol use, and childhood abuse were predictive

of abuse perpetration for men and women, with psychological abuse being the most common form of

perpetration. Shame was also present following perpetration. Adverse mental health, isolation, and

reluctance to disclose were either risk factors for or outcomes of shame and substance use. Resilience,

self−regulation, and positive peer support were protective factors in preventing substance use and

related maladaptive coping behaviors (e.g., self−harm, risky sexual behavior).
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Meniscus injuries that fail to heal can instigate catabolic changes in the knee, posing a high risk

for the development of post−traumatic osteoarthritis(PTOA). We have established human articular

cartilage−derived progenitor cell−lines(CPCLs) as a potential therapeutic tool for accelerating

meniscus tissue healing. Characterization of these cell lines revealed that they are less catabolic and

hypertrophic than marrow−derived stromal cells(BM−MSCs). The Stromal Cell−Derived Factor−1(SDF−1)/CXCR4

pathway is crucially important for stimulating the directional migration of CPCs to stimulate meniscal

fibrocartilage repair. In this study, our goal was to understand how SDF−1/CXCR4 signaling might play an

influential role in helping CPCs achieve their therapeutic efficacy.
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Due to the misuse of antibiotics, surgical site infections (SSIs) by antimicrobial−resistant (AMR)

pathogens are an increasing threat to the US healthcare system. Furthermore, the stagnant discovery

of new antibiotics requires the development of novel approaches to combat these infections. Thus,

research has turned to organometallics as a possible solution, specifically silver due to its multimodal

bactericidal properties. To harness silver's capabilities, we have developed a silver carboxylate

(AgCar) compound released via a titanium dioxide−PDMS matrix. In this study, we assess AgCar's ability

to induce reactive oxygen species (ROS) release and peroxidase (POD) activity in Methicillin−Resistant

S. aureus (MRSA) strains MW2 and VRS1 persister cells.
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Figure 1. Fold change of ROS presence in persister cells of MRSA strains MW2 and VRS1. 
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Aim Neutropenia or neutrophil dysfunction are associated with increased susceptibility to severe

bacterial and fungal infections. Recently, we characterized murine neutrophil progenitor cell lines

(NPs) that are conditionally immortalized via HoxB8 expression and are uniquely capable of engrafting

in the naïve murine host. We propose that NPs may serve as a therapeutic adjunct for reducing infection

resulting from neutropenia or neutrophil dysfunction. To achieve this, it is first important to

understand the mechanisms of NP engraftment in the hematopoietic niche. We have observed that NPs home

and/or engraft via a VLA4−independent, beta1 integrin−dependent mechanism. We found that engrafted NPs

proliferate and differentiate into mature neutrophils that are mobilized to the periphery via canonical

CXCR2 signaling. Here, we describe studies to determine the impact of cytoreductive conditioning of

host niche space via antibody−mediated depletion of Ly6G−expressing cells or busulfan−mediated HSPC

ablation on NP engraftment. To further evaluate the potential translational utility of NPs, we also

probe candidate integrin alpha subunits and signaling receptors to determine their role in NP homing and

engraftment.
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Anterior cruciate ligament (ACL) injuries are more common in females than males with hormonal

fluctuations speculated to contribute in some way. The hormone relaxin has been demonstrated to have

negative effects on collagen in vitro and has a higher circulating concentration in females. For these

reasons, the overarching project goal is to determine whether oral relaxin administration induces ACL

biomechanical laxity in a rodent model. To achieve this, the aims of the present study were to develop

an optical method to quantify ligament cross−sectional area (CSA) that enables calculation of ACL

mechanical properties, and to explore whether CSA was affected by age and/or relaxin treatment.
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Four Sprague−Dawley rats were used to develop the optical method for CSA measurement. All soft

tissue was dissected leaving the femur−ACL−tibia complex which was mounted in a custom loading jig.

Sagittal and coronal images of the ACL were taken, and the ligament diameters were measured digitally

at their smallest width using ImageJ. CSA was calculated by fitting an ellipse to the measures.

Intra− and inter−rater agreement was expressed as the mean absolute and percent differences. Bias and

precision were tested using Bland−Altman analyses. For the overarching study, 36 female 10−12 week old

Sprague−Dawley rats were randomized into 3 groups of 12: 1) no treatment; 2) treated with relaxin for 10

days; 3) aged to 14−16 weeks old. CSA results were described qualitatively.
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Carpometacarpal joint osteoarthritis (CMCJ OA) is a joint degenerative disease of the hand and the

etiology of CMCJ OA remains elusive. A study by Jurynec et al. identified cohorts of patients with

CMCJ OA that segregated as an apparent autosomal dominant trait. This study has linked CMCJ OA to a

rare coding variant for the gene encoding chondroitin sulfate synthase 3 (CHSY3). This variant is a

point mutation causing a substitution of glycine to arginine (G629R) in a region that participates in

the production of chondroitin sulfate, suggesting that an alteration in this process is a major risk

factor for the development of OA. The goal of this project is to develop novel cell lines that either

lack CHSY3 or express the CHSY3 G629R variant, and then study the impacts of the CHSY3G629R mutation on

chondrocyte biology.
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