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Primary gliosarcoma (PGS) is a rare, malignant brain tumor consisting of glial and mesenchymal elements

and categorized as a variant of glioblastoma (GBM) per the WHO classification. The purpose of this study

is looking first at how the mesenchymal foci are diagnosed based on current practices examining typical

histomorphology, stains, and molecular studies. The second is examining the pathogenesis of the sarcomatous

foci, given its CNS location and monoclonal glial origin and fibroblastic changes that enable this tumor to

shift glio−mesenchymal boundaries.
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