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Biofilms are intrinsically resistant communities surrounded by a protective extracellular polymeric substance

(EPS) causing high recurrent infections.1,2 We aim to combine biofilm destabilizing agents, cellulase, and

ascorbic acid with vancomycin or daptomycin in a novel strategy to eradicate established Staphylococcus

Aureus biofilms.1,3
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Four unique MRSA biofilms of varying strengths/stabilities were grown in tryptic soy broth with 1% dextrose,

12.5mg/mL magnesium, 25mg/mL calcium, and 6 log10CFU/mL bacterial inoculum. Biofilms were grown 20hrs in

96−well tissue culture treated polystyrene plates then gently rinsed with sterile water before 24hr lock

treatment with anti−biofilm agents or antibiotics, monotherapy or in combination. Subsequently, plates were

rinsed and dried overnight to fix biofilms to the well surface. Biofilms were stained with 0.1% crystal

violet (CV) for 15 minutes and then rinsed before glacial acetic acid (33%) was added to resolubilize the

remaining CV. BioTek plate reader at 570nm read the optical density of the remaining CV. Eradication was

defined as readings of =0.09 optical density.
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Eradication of an established Staphylococcus aureus biofilm with
synergistic combination of an anti−biofilm and an antibiotic agent


